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An extended volumetric scheme is proposed for lattice Boltzmann �LB� models. This scheme is particularly
desirable for multispeed LB models due to its removal of nonlocal advection. It recovers the same macroscopic
hydrodynamics as the standard lattice Boltzmann method without any further treatments. This scheme achieves
an effectively reduced Courant-Friedrichs-Lewy number so that numerical stability is significantly enhanced
for high Reynolds number simulations while maintaining the same order of numerical accuracy.
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I. INTRODUCTION

The lattice Boltzmann method �LBM� is a viable compu-
tational fluid dynamics �CFD� tool for simulating complex
fluid flows �1–4�. It has many attractive advantages over con-
ventional CFD methods, such as intrinsic parallelism, sim-
plicity of coding, capability of handling complex geometries,
and ease of incorporating multiphase interactions, to name a
few. Nevertheless, the standard LBM often suffers from nu-
merical instability when viscosity is greatly reduced. This is
partially due to the fact that LBM marginally satisfies the
Courant-Friedrichs-Lewy �CFL� condition �5,6�. Such an un-
desirable feature limits LBM applications for simulation of
flows at high Reynolds number, unless higher grid resolu-
tions are used. Motivated in part by such a consideration,
several volumetric schemes have been introduced previously
�7,8�. The essential concept of a volumetric scheme is to
reduce effectively the CFL number by reducing the particle
propagation time step to achieve better numerical stability
while maintaining the same numerical accuracy. Though de-
tails are different, all these schemes demonstrate a better
stability than the standard LBM. In this paper, we present a
further extension of a volumetric scheme from the work of
Ref. �8�. This scheme is specially suitable for LBM models
involving multiple speeds greater than unity.

The standard multispeed LBM with the popular
Bhatnagar-Gross-Krook �BGK� collision operator �9� can be
represented by the following evolution equation for particle
distribution function, f ij�x , t�,

f ij�x + cij�t,t + �t� = f ij� �x,t� ,

f ij� �x,t� = f ij�x,t� + �ij�x,t� ,

�ij�x,t� = −
f ij�x,t� − f ij

eq�x,t�
�

, �i = 1, . . . ,bj; j = 1, . . . ,J� ,

�1�

where cij is the discrete particle velocity and � is a relaxation
time to local equilibrium. �t is the lattice time increment,
and conventionally �t=1 for convenience. bj denotes the
total number of particle velocity directions for a given en-
ergy level � j ���cij�2 /2�, and J represents the total number of
energy levels. The above dynamics consists of two alternat-
ing operations: advection and collision. During each time

increment, f ij�x , t� advects to the neighbor cell at location
x+cij according to velocity cij, and then it collides with dis-
tribution functions of other particle velocities in the same
lattice cell. The collision term �ij is constrained to satisfy the
local conservations of mass, momentum and energy. f ij� �x , t�
represents the particle distribution after a collision, i.e., the
postcollide distribution. With the appropriately prescribed lo-
cal equilibrium distribution function f ij

eq�x , t�, the macro-
scopic dynamics of the Navier-Stokes equations is recovered
in LBM at the long wavelength and low frequency limit. The
hydrodynamics quantities of the fluid flow, such as fluid den-
sity �, velocity u and energy e, are determined by taking
moments of distribution function f ij�x , t�,

��x,t� = �
ij

f ij�x,t� , �2�

��x,t�u�x,t� = �
ij

cij f ij�x,t� , �3�

��x,t�e�x,t� = ��x,t��D

2
T�x,t� +

1

2
u2�x,t�	 = �

ij

� j f ij�x,t� ,

�4�

where T�x , t� is temperature, and D refers to dimension of
the lattice of a given lattice Boltzmann �LB� model.

The original concept and general formulation of volumet-
ric LB model was described by Chen in 1998 �7�. The
scheme obeys exact conservation laws for arbitrary mesh
structures and resolutions. The volumetric-based fractional
particle advection is weighted by the overlapping area of the
moving cell and its neighboring cells. As a result, this
scheme is relatively complicated and is not very efficient
computationally. The scheme of Zhang et al. �8� is a direct
extension of Chen’s original model but with significant sim-
plifications in particle advection. It only advects a fraction of
particles from their original site x to the unique destination
site x+cij indicated by particle velocity cij. Besides algorith-
mic simplicity, the advection process is exactly along the
particle microscopic velocity characteristic lines, so that nu-
merical diffusion is minimized. However, for LB models in-
volving multiple speeds greater than unity, scheme of Zhang
et al. requires more than one lattice spacing distance in each
advection step. This nonlocal advection is not desirable from
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parallel computation point of view, especially for applica-
tions involving complex geometries. To remove such a non-
locality while still maintaining the other advantages, we
present in this paper a further extended volumetric scheme to
Zhang et al. together with some numerical verifications.

II. DESCRIPTION OF THE EXTENDED VOLUMETRIC
SCHEME

For a typical LB model possessing multiple speed levels
N ��1�, the particle speed level can be represented in such a
way that for any particle at speed level k �k=1,2 , . . . ,N
−1�, the Cartesian component of its velocity is either zero or
±k single integer value. Thus, the lattice velocity can be ex-
pressed as

cik = kĉik,

where ĉik now only has components of either 0 or ±1. Obvi-
ously, lattice site x+ ĉik is a nearest neighbor site of x along
the direction cik. Note here that the speed-level k may not be
identical to the energy level j subscribed in the Eq. �1�.

The basic idea of the present volumetric scheme is to
realize a particle advection process for all speed levels that
only involves nearest neighbor sites per time step. To achieve
this local advection, instead of an overall factor of p �8�, the
fractional advection factor is defined per speed level k,
namely

pk = kp .

With the above definition, we divide the particle distribu-
tion f ik� �x , t� into two parts, f ik

move�x , t� and f ik
nonmove�x , t�:

f ik
move�x,t� = pk�f ik� �x,t� + �f ik

move�x,t�� , �5�

f ik
nonmove�x,t� = �1 − pk��f ik� �x,t� + �f ik

nonmove�x,t�� , �6�

where

�f ik
move�x,t� =

�1 − pk�
2

�f ik� �x,t� , �7�

�f ik
nonmove�x,t� = −

pk

2
�f ik� �x,t� , �8�

and

�f ik� �x,t� = f ik� �x + ĉik,t� − f ik� �x,t� . �9�

From the above, one can see that the mass conservation is
strictly enforced by f ik

move+ f ik
nonmove= f ik� . The term �f ik� arises

from the use of a first-order �“downwind”� approximation to
the local particle distribution gradient in a volumetric repre-
sentation. This ensures that the overall accuracy of the ex-
tended volumetric scheme is second order �7�.

The present extended volumetric advection process can be
written as

f ik�x,t + 1� = f ik
move�x − ĉik,t� + f ik

nonmove�x,t� . �10�

That is, the moving part in cell x is advected to the nearest
neighbor cell x+ ĉik, while the nonmove part stays in x. The

postadvect distribution is a result of the summation of the
two parts after the advection step. As the consequence of
such an advection, we obtain the LB equation for our scheme
as

f ik�x,t + 1� = pk� f ik� �x − ĉik,t� +
�1 − pk�

2
�f ik� �x − ĉik,t�	

+ �1 − pk�� f ik� �x,t� −
pk

2
�f ik� �x,t�	 . �11�

In order to ensure a valid nearest neighbor advection �0
	 pk
1�, the overall fraction factor p must be bounded as
0	 p
1/ �N−1� for an N-speed LB model. Other than the
nearest neighbor only advection, the present scheme is very
similar in form to that of Zhang et al. �8�. Indeed, for LB
models only involve “speed-1” particle distributions, the two
schemes become identical.

With the Taylor expansion of Eq. �11� and the use of Eq.
�9�, it is easily shown that the postadvect distribution,
f ik�x , t+1�= f ik� �x− pcik , t�, is satisfied up to the second order
in spatial derivative. This is the same as the standard LBM
with the understanding that each physical time step in this
scheme is only p fraction of a time step in the standard LBM,
which is to be further verified as bellows.

It is relatively straightforward to derive the resulting hy-
drodynamic equations from this LB scheme. A standard
Chapman Enskog expansion �10� is employed here

�

�t
= �

�

�t1
+ �2 �

�t2
, � = ��1 �12�

and

f ij = f ij
eq + �f ij

�1� + �2f ij
�2� + O��3� , �13�

where � is a small perturbation value representing the ratio
of lattice scales to macroscopic hydrodynamic scales. Apply-
ing the above expansion together with the Taylor expanded
form of Eq. �11� up to second order, we obtain a set of
differential equations below

�f ij
eq

�t1
+ pcij · �1f ij

eq = −
f ij

�1�

�
, �14�

at order �, and

�f ij
eq

�t2
+ 
1 −

1

2�
�
 �f ij

�1�

�t1
+ pcij · �1f ij

�1�� = −
f ij

�2�

�
�15�

at order �2. The above analysis has used the relationship
pjĉij = pcij. Since the factor p is an overall constant, the en-
ergy level subscript j can be treated as representing the speed
level for convenience. Compared with the equations derived
from standard LBM �3,8�, the only difference in the above
forms is that cij is replaced by pcij. It is straightforward to
see that this is effectively achieving a reduced time step size
p �
1�, instead of unity in the standard LBM. Hence, a
particle only advects a distance of pcij per each time step.
After taking moment summations over cij to Eq. �14� and
�15�, we obtain the hydrodynamic equations
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��

�t
+ p � · ��u� = 0, �16�

���u�
�t

+ p � · � = 0, �17�

where � is the momentum flux tensor

� = �
ij

cijcij� f ij
eq + 
1 −

1

2�
� f ij

�1�	 . �18�

An appropriate choice for local equilibrium distribution
function f ij

eq can lead to the desired hydrodynamic equations.
In order to demonstrate the unique nearest neighbor advec-
tion feature, in this paper we adopt the so called 34-state
multispeed LB model with three energy levels �11�, j
=0,1 ,2. Figure 1 shows the diagram of the model. f ij

eq, up to
third order, is given as follows:

f ij
eq = �gj�T��1 +

cij · u

T
+

�cij · u�2

2T2 −
u2

2T
+

�cij · u�3

6T3

−
cij · u

2T2 u2	 , �19�

where

g0�T� = 1 − �3T − 3T2� , �20�

g1�T� =
2T − 3T2

12
, �21�

g2�T� =
3T2 − T

24
. �22�

The temperature value T can vary from 1/3 to 2/3
�11,12�. It can be shown that the zeroth and first order mo-
mentum flux forms are given as

��0� = �
ij

cijcij f ij
eq = PI + �uu , �23�

��1� = 
1 −
1

2�
��

ij

cijcij f ij
�1� = − p��2S −

2

D
�� · u�I	 ,

�24�

where I is the unit second-rank tensor, kinematic viscosity is
= ��− 1

2
�T, and strain tensor is S��= 1

2
� �u�

�x�
+

�u�

�x�
�.

Rescaling the time and viscosity by

t� = pt , �25�

� = p = pT�� − 1
2 � , �26�

the resulting rescaled hydrodynamic equations are shown as
follows:

��

�t�
+ � · ��u� = 0, �27�

���u�
�t�

+ � · ��uu� = − �P + � · ���
2S −
2I

D
� · u�	 .

�28�

Consequently we have demonstrated that the present volu-
metric scheme recovers the Navier-Stokes equations at the
same order of accuracy as the standard LBM without any
additional approximations. Moreover, the scheme immedi-
ately illustrates two appealing advantages over the standard
LBM. First, the LBM stability is substantially improved with
a more relaxed CFL condition. In the present scheme, the

FIG. 1. Diagram of the 34-state LB model.
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CFL number is reduced from �t�cij� /�x to p�t�cij� /�x, since
the fraction factor p is always less than unity. Second, the
resulting viscosity  is reduced by factor p. This helps to
achieve lower viscosity �higher Reynolds number� at a given
relaxation time �. On the other hand, the total computational
time steps are increased by a factor of 1 / p compared to the
standard LBM in order to simulate the same physically de-
fined time duration. Compared with the previous volumetric
schemes �7,8�, the present scheme should have a better com-
putational performance for LB models with multiple speed
levels, since it has advections only involving nearest neigh-
bor lattice sites.

Because of the fractional factor, particle advection is no
longer exact as in the standard LBM: there exists a numerical
diffusion at higher than the viscous order. In other words,
there is an equivalent hyper-viscosity effect in the volumetric
scheme. Nevertheless, unlike the volumetric scheme of Chen
�7�, the present formulation does not contain numerical dif-
fusion in directions transverse to any microscopic particle
velocity. This is due to the fact that the fractional advection
is exactly along the particle velocity characteristic line, and
no interpolation in any transverse directions is imposed.
Since the current scheme has the same overall order of ac-
curacy as the standard LBM, it is expected to capture flow
structures as well as that of the standard LBM. The hyper-
viscous effect should only manifest itself in small flow struc-
tures near the grid resolution scale. The numerical investiga-
tion of the accuracy and stability of the present volumetric
scheme is presented in the next section.

III. NUMERICAL TESTS

A. Poiseuille flow

First, the two-dimensional Poiseuille flow is chosen to
investigate the accuracy of the scheme. It is a simple two-
dimensional flow in a straight channel driven by a constant
pressure gradient force. The analytical solution for such a
steady flow is given by

u =
h2g

2

y

h

1 −

y

h
� = 6umean

y

h

1 −

y

h
� , �29�

where h is the width of the channel and g is the constant
pressure gradient force along the streamwise �x� direction.

We performed a series of simulations at various resolu-
tions, h=30, 40, 50, 60, and 70. The well known “half-way”
bounce back boundary condition is applied at both the upper
and lower channel walls and the periodic boundary condition
is imposed in the streamwise direction. In these calculations,
the fractional factor p is set to 0.5, and Re= �humean� / is
1000. The mean velocity umean is fixed at a constant value of
0.0667 in lattice units, and the corresponding umax is 0.1. For
simplicity, all simulations are carried out isothermally at
temperature T=0.5. Figure 2 shows the comparison of the
velocity profiles at different resolutions with the analytical
solution. All the velocities and distances are normalized by
umean and the width of the channel h, respectively. It is seen
that there is a higher order numerical error �hyperviscous
effect� in the current scheme and its magnitude decreases

rapidly as resolution increases. The behavior of this numeri-
cal error in relation to resolution is shown in Fig. 3. The
circles represent the measured deviation of the maximum
velocity in these simulations from that of the analytical
value. The solid line is a curve fit with a leading term pro-
portional to ��x�3 indicating the numerical diffusion is at
least two orders higher than that of the regular physical vis-
cosity. As shown in the figure, the maximum velocity devia-
tion is less than 1% when the resolution is over 60 cells
across the width of the channel. Furthermore, we want to
address the importance of the first order gradient correction
in Eq. �11�. Without such a gradient term, the resulting mo-
mentum flux term can be theoretically shown to have a reso-
lution dependent regular viscosity �as opposed to a hypervis-
cosity�. This is to be compared with the exact Navier-Stokes
form �see Eq. �11�� when the gradient term is included. Fig-
ure 4 shows the results of the maximum velocity error from
two sets of simulations that are with �circle� and without
�square� the gradient term. The Re number here is 10. With-

FIG. 2. Steady state velocity profile in the two-dimensional Poi-
seuille flow at Re=1000. The solid line is the analytical solution.
The symbols represent different resolution all with p=0.5. All quan-
tities are normalized by characteristic values of the flow.

FIG. 3. Peak velocity error vs grid size in the two-dimensional
Poiseuille flow at Re=1000 and p=0.5. Epeak= �max�usim�
−max�uanal�� /max�uanal�. Circles represent numerical results and
solid line represents a fitting curve with decaying rate ���x�3.
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out the gradient term, the error is several orders of magnitude
larger than that with the gradient term, and the convergence
rate of the former is roughly linear. This error is even greater
relative to the true viscosity at higher Re numbers. Hence,
the gradient term is essential to ensure a second order accu-
rate LBM scheme in the present formulation.

B. Shear momentum wave decay

To further verify the accuracy of the scheme, a two-
dimensional sinusoidal momentum shear wave decay at vari-
ous wave length is simulated.

The flow is initialized as a transverse sinusoidal wave in
that the flow velocity is in the x direction and it varies sinu-
soidally in the y direction

ux�y,t = 0� = 0.1 sin
2�

L
y� , �30�

where L is the wavelength. Periodic boundary condition is
applied in all directions. It is known that the shear wave
decays exponentially in time due to viscosity. Three values
of p=0.25, 0.5, and 1, are used to investigate if the accuracy
has any dependence on p. All simulations are performed with
Re=128 and T=0.5. Since the valid range of p for the cur-
rently used three-speed LB model is 0	 p
0.5, the results
at p=1 are actually calculated using standard LBM. Figure 5
shows the measured viscosities �in a dimensionless form,
1/Reresulted=meas / �u0L�� at different wavelength values
�in terms of lattice units�, where u0=0.1 and meas is the
viscosity value measured from each of these simulations.
The circles, squares, and triangles represent simulations with
p=1, 0.5, and 0.25, respectively. The solid line represents the
theoretical viscosity value given by Eq. �26�. One can see
that the discrepancy between the measured and theoretical
values for p=0.5 and 0.25 is peaked at short wavelengths
and decreases sharply as wavelength increases. As wave-
length becomes sufficiently long �L�32�, the error becomes

vanishingly small. We wish to emphasize that results for
wavelengths with eight lattice points or less correspond to
extreme situations, which are impractical for performing
simulations at such a Reynolds Number �Re=128�. Notice
though the standard LBM �p=1� shows the similar behavior
with a much smaller discrepancy at the short wavelengths, it
becomes unstable �oscillating� at L=4. Thus it confirms that
the present scheme indeed recovers the correct Navier-
Stokes behavior as that of the standard LBM at the long
wavelength limit, and the numerical error is shown as a
higher order numerical effect. This hyperviscouslike effect
only damps out small fluid structures close to the spatial
resolution scale, and has little impact on large scale flows.
Therefore, numerical results are rapidly improved as one ap-
plies higher resolutions. A side benefit of such a hypervis-
cous effect is the improvement of numerical stability, which
is confirmed by the simulations at L=4 here. Numerical fluc-
tuations at the grid scale are suppressed by such an effect.
Figure 5 also indicates that the hyperviscous effect varies
with the parameter p. To further investigate the dependence
of numerical error on p, we performed simulations on a set
of p values for a specific wavelength of L=16, shown in Fig.
6. As observed, the numerical error is reduced as p de-
creases. The reduction of p not only creates a more relaxed
CFL condition, but also allows a relatively large relaxation
time � for a given theoretical viscosity. However, the price
paid with a smaller p is that more time steps are required to
simulate the same physical time.

C. Two-dimensional lid-driven cavity flow

As the third and final test, we choose the benchmark case
of two-dimensional cavity flow to demonstrate the overall
quality of our present scheme. This case has been well stud-
ied due to its simple geometry and complex nonlinear flow
structures. Our simulation results are directly compared with
the direct numerical simulation �DNS� results of Ghia et al.
�13� and the LBM results of Hou �14�.

FIG. 4. Peak velocity error vs grid size in the two-dimensional
Poiseuille flow at Re=10 and p=0.5. Epeak= �max�usim�
−max�uanal�� /max�uanal�. Circles are results with the first order gra-
dient correction and squares are results without the gradient
correction.

FIG. 5. Dimensionless measured and theoretical viscosities vs
wavelength �in cell unit� in shear momentum wave decay at
Re=128. 1 /Reresulted=meas / �u0L�. The solid line represents the the-
oretical value of 1 /Re. The circles, squares and triangles are for
p=1, 0.5, and 0.25, respectively.
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The test is defined by a 100�100 lattice square domain
with the half-way bounceback boundary condition every-
where except for the top lid moving with a uniform velocity
of U=0.1. Simulations are conducted for a wide range of
Reynolds numbers from 100 to 7500, with p=0.5 and T
=0.5 as in the previous tests. The flow structures in all our
simulations agree well with the known published results
�13,14�. In addition to the large primary vortex in the center,
two small secondary counter-rotating vortexes appear in the
bottom corners of the cavity. The locations and sizes of these
vortexes strongly depend on the values of Reynolds number.
As Re reaches to 2000, a third vortex is developed in the
upper left corner �Fig. 7�. As Re further increases, the corner
vortexes become stronger and more and more small flow
structures emerge.

Direct comparison of the locations of the vortex centers
are listed in Table I. Our simulation results show good quan-

titative agreements with other bench mark results �13,14�.
Besides the primary vortex, all three corner vortexes are well
reproduced. It is worth noting here that Hou’s resolution is
256�256 and ours is 100�100. This is mainly because of
the well known stability limitation of the former: the stan-
dard LBM becomes numerically unstable for Re greater than
2000 at resolution 1002. On the contrary, our scheme is
stable for Re up to 7500 or higher at this resolution. The
hyperviscous numerical effect greatly improves numerical
stability while the scheme still captures accurately most of
the flow structures. Figure 8 shows streamlines of one of our
simulations with Re=7500. Indeed, except the size of the left

TABLE I. Vortex locations in a two-dimensional �2D� cavity. a: Ghia et al. �see Ref. �13��; b: Hou �see
Ref. �14��; c: present work. All locations normalized by the size of cavity.

Re Primary vortex Lower left Lower right Upper left

100 a �0.6172, 0.7344� �0.0313, 0.0391� �0.9453, 0.0625�
b �0.6196, 0.7373� �0.0392, 0.0353� �0.9451, 0.0627�
c �0.6139, 0.7288� �0.0372, 0.0373� �0.9423, 0.0598�

1000 a �0.5313, 0.5625� �0.0859, 0.0781� �0.8594, 0.1094�
b �0.5333, 0.5647� �0.0902, 0.0784� �0.8667, 0.1137�
c �0.5304, 0.5584� �0.0823, 0.0739� �0.8670, 0.1062�

2000 b �0.5255, 0.5490� �0.0902, 0.1059� �0.8471, 0.0980�
c �0.5171, 0.5414� �0.0877, 0.1074� �0.8484, 0.0937�

5000 a �0.5117, 0.5352� �0.0703, 0.1367� �0.8086, 0.0742� �0.0625, 0.9102�
b �0.5176, 0.5373� �0.0784, 0.1373� �0.8078, 0.0745� �0.0667, 0.9059�
c �0.5099, 0.5280� �0.0833, 0.1243� �0.8228, 0.0858� �0.0477, 0.9038�

7500 a �0.5117, 0.5322� �0.0645, 0.1504� �0.7813, 0.0625� �0.0664, 0.9141�
b �0.5176, 0.5333� �0.0706, 0.1529� �0.7922, 0.0667� �0.0706, 0.9098�
c �0.5083, 0.5278� �0.0781, 0.1425� �0.8005, 0.0760� �0.0551, 0.8962�

FIG. 6. Dimensionless measured and theoretical viscosities vs
fractional factor p in shear momentum wave decay at Re=128 and
L=16 �in cell unit�. 1 /Reresulted=meas / �u0L�. The solid line repre-
sents the theoretical value of 1 /Re. The diamonds are for measured
values.

FIG. 7. Stream line of Re=2000 and p=0.5 in the cavity. Reso-
lution is 100�100. The lid is moving from left to right. Re
=UL /, where U is the velocity of the lid and L is the size of the
cavity.
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upper vortex is slightly smaller than Hou’s high resolution
based results, all other flow features are very well predicted.

IV. CONCLUSION AND DISCUSSION

In this paper, we have presented an extended fractional
volumetric LB scheme. This scheme is particularly desirable
for LB models involving multiple speed levels. It achieves a
local advection process that only includes nearest neighbor
lattice cells, even for particles with speed higher than one
lattice unit. This local one-cell advection is especially advan-

tageous in that it can efficiently reduce the amount of data
communication and, hence, improve the parallel computation
efficiency and scalability.

We have also shown that the present scheme recovers the
Navier-Stokes equations at the same order of accuracy as the
standard LBM without any additional approximations. In ad-
dition, the present scheme has demonstrated a better stability
than the standard LBM due to the improved CFL condition.
By effectively reducing viscosity by the fractional advection
factor p, this scheme is shown to be significantly more robust
at high Reynolds numbers in which the standard LBM fails.
On the other hand, a hyperviscous numerical effect exists in
the present scheme. Such a high order numerical diffusion
effect decreases rapidly either as the overall resolution is
increased or the flow scale of interest is much larger than that
of the lattice grid spacing. Since it is only effective at near
grid scale wavelengths, the hyperviscosity also helps to fur-
ther enhance the numerical stability over the standard LBM,
as shown in the cavity simulations above.

The numerical algorithm of the present volumetric
scheme is rather simple structurally and very easy to imple-
ment. Regarding the computational cost, the current scheme
increases the total simulation time steps by a factor of 1 / p in
order to achieve the same physical time as the standard
LBM. However, with a much-enhanced stability, the scheme
can achieve high Reynolds number at lower resolutions. This
in turn reduces the overall computational cost. Together with
the advantage of achieving local advection for all particle
speed levels, the overall computational cost associated with
the current scheme is promising. Finally, we want to point
out that this scheme is particularly good for LB models in-
volving noninteger particle speeds �15�.
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